New MINI & PSA Engine Range In Detail


Yesterday we gave you the overall picture of the next generation MINI's engine range. Today we'll get down to the details… (From BMW Press)

Successful Cooperation.

Joining forces in the joint venture, the BMW Group and PSA Peugeot Citroen have developed a new family of small petrol engines. These power units featuring the most advanced engine technologies are intended for use in Peugeot and Citroen models as well as future versions of MINI cars.

The new engine family is a significant step for both partners in maintaining the self-commitment assumed by European car makers within the ACEA Association of Car Manufacturers, promising to reduce fleet consumption and, as a result, CO2 emissions to 140 g/km by the year 2008.

For the first time the project is able to elegantly solve the conflict of interests between demanding engine technologies, on the one hand, and the usual cost pressure in the small and compact car segment, on the other.

Advantageous for both sides.

Both partners have contributed their know-how in technology and their experience in large-volume production to the project, and now both parties benefit in the same way. In other words, this is a win-win situation to which each partner has contributed all its know-how and expertise. The project proves that fuel-efficient power units with innovative engine technology may also be built economically in the lower car segments.

Each manufacturer has contributed special competences and skills both in the area of engine development and in using the world's best and most advanced production methods.

PSA Peugeot Citroen will be building the new engines at its plant in Douvrin, France. Planned capacity in production is up to 2,500 units a day.


Curtains Open for a New Engine Family.

Developing the concept for the new engine family, the project team has opted for two technology variants. The derivatives of these two very different variants will define a new standard in their class in technological terms and in terms of their dynamism, economy, and long running life.

The engines are characterised by the exchange of know-how between engine development specialists on both sides, since, in developing and implementing the engine concept, the same attention was given to both BMW's principle of efficient dynamics and the PSA Peugeot Citroen principle of minimum fuel consumption.

These new engines will offer exceptional power and a muscular torque curve in their class throughout a very wide useful speed range, at the same time reducing both fuel consumption and weight to a minimum.

The engines developed in this joint venture incorporate numerous features carried over from BMW's trendsetting power units, for example from the latest

generation of straight-six petrol engines.

Some examples:

  • Fully variable valve drive
  • Flow-controlled oil pump
  • Single-belt drive of all ancillary units
  • Individual ignition coils
  • Composite camshafts
  • Weight-optimised roller-type drag arms
  • Cylinder head produced by lost-foam casting

The following new concepts and solutions have also been implemented in the project:

  • Direct gasoline injection for extra power and performance
  • Twin-scroll exhaust gas turbocharger
  • On-demand water pump
  • Poly-V-belt with built-in tensioner
  • Lightweight concept (including an aluminium crankcase, intake manifold and cylinder head cover made of a special plastic material)

Optimised fuel economy plus remarkable power.

The first two products in this joint venture will feature a 1.6-litre petrol engine with fully variable valve drive, maximum output of 85 kW/115 bhp, and maximum torque of 160 Nm/118 lb-ft.

One of the most significant objectives in developing this normal-aspiration power unit was to achieve a muscular torque curve at the highest possible level combined with best-in-class fuel economy and emission management on low weight.

High-performance turbocharged power unit with direct fuel injection.

Direct petrol injection in this engine serves in particular to combine high specific output with exemplary fuel economy. Further advantages are a high standard of refinement and outstanding emission management.

The compact four-cylinder will be featured both in sports-oriented models as well as PSA Peugeot Citroen cars in the lower segments of the market, where it will be replacing large-volume normal-aspiration power units. The reason for this strategy is that small, turbocharged engines with a high level of power density offer a significant advantage in fuel economy over normal-aspiration engines of larger capacity.

These two engines are the first members in a complete family of power units which will ultimately range in output from 55 kW/75 bhp all the way to 125 kW/170 bhp.


A New Standard Ensured by Successful Implementation of Innovative Solutions.

From the start, the specifications defined for the project made clear demands of the new engine family and the standards it was to meet:

Without making any concessions in terms of power, performance, and motoring refinement, the engines have moved up the benchmark once again inter alia in terms of specific fuel consumption, their torque curve, anti-friction smoothness, and in terms of the overall engine package, thus setting new standards in every respect.

This success is attributable in part to numerous innovations and solutions adding up to make the new engine family a new benchmark in its class.

  • Fully variable valve drive.
    Without requiring a throttle butterfly, fully variable valve drive controls engine output by infinite adjustment of valve stroke and intake valve opening times. This loss-free load management reduces fuel consumption, cuts back emissions, and ensures better engine response with an enhanced standard of motoring refinement.

  • Twin-scroll turbocharger.
    On the twin-scroll turbocharger the ducts of each set of two cylinders are separated from one another in the exhaust gas manifold and the turbocharger. This serves to build up a charge effect from just about 1,400 rpm, with torque being generated just as quickly as on a compressor engine.

  • Direct gasoline injection.
    High-pressure gasoline injection (120 bar), together with advanced turbocharger technology, is the main reason of the high level of specific output, low fuel consumption and the exemplary emission management ensured by the turbocharged engine.

  • Fully controlled oil pump.
    On-demand oil supply delivers only as much oil as is actually required. Depending on operating conditions, the volume flow-controlled oil pump requires up to 1.25 kW less drive energy and reduces fuel consumption by up to 1 per cent.

  • On-demand water pump.
    Driven by a friction gear, the water pump is not activated until the engine has reached its normal operating temperature, thus enabling the engine to warm up more quickly. This serves both to reduce fuel consumption and improve emissions at the same time.

  • Aluminium crankcase in bedplate design.
    Offering best-in-class stiffness, excellent noise management, and the integration of numerous functions and ancillary units, the aluminium crankcase is quite unique in every respect.

Optimum friction management on both the crankdrive and valve drive. Optimum configuration of the bearings and the conversion of all mechanical transmission elements in the valve drive to roll friction serves to minimise friction losses to the lowest level in this engine category.

Optimum package dimensions.

Integration of numerous functions and ancillary units into the cylinder head and crankcase avoids the use of conventional add-on systems, improves the engine's noise management, and reduces both weight and dimensions. Single-belt drive of engine components and modules also makes a significant contribution to the compact design and dimensions of the engine.


The Engine Block: Setting the Foundation for Two Very Different Variants in Technology.

A strong foundation is obviously the basic prerequisite for a successful engine concept. Hence, the engine block is conceived and designed to meet the requirements of both technology variants in every respect and without the slightest concession.

For production reasons, the geometrical dimensions of the new engine family are to a large extent identical in all derivatives of the engine. Inter alia, this includes the distance between cylinders of 84 mm (3.31″), the bore of 77 mm (3.03″), and the height of the crankcase. The two 1.6-litre power units also share the same stroke of 85.5 mm (3.36″) and a capacity of 1,598 cc.

Innovative crankcase with outstanding qualities.

The two-piece bedplate construction of the aluminium crankcase made up of the cylinder block and the bearing housing is an elaborate achievement in technology carried over from motorsport. Together with its reinforcement ribs, this strong structure gives the engine an extremely high level of stiffness and sets new standards in this class of motoring.

This special structure is also the reason for the engine's excellent acoustics and noise control quite comparable to the features of a much heavier grey-cast iron engine block and indeed marking the very best among engines with an aluminium block. The aluminium bedplate housing the crankshaft is fitted to and bolted on the cylinder block. In the turbocharged engine the bedplate incorporates sintered steel inserts for the crankshaft bearing taking the higher forces acting on the engine into account. A further sign of distinction is that the cast-in grey-cast iron liners end flush at the top with the cylinder head gasket (open liner design).

The crankcase has open cross-sections at the top reducing any pump losses caused by the movement of the crankdrive.


Integrated functions for enhanced quality.

The chain housing integrated in the engine block offers the advantage of not requiring any additional seals, with the complete chain drive entering the assembly process as a partly pre-assembled module.

The mounts cast into the engine block for ancillaries such as the alternator and a/c compressor also reduce the complexity of the entire unit, at the same time cutting back weight and shortening the period required for assembly. And last but certainly not least, this kind of integration improves sound management and provides even stiffer, firmer fastening points for the ancillary units.

Low-friction crankdrive reducing fuel consumption. Since, given the right configuration, the combination of a four-cylinder power unit and front-wheel drive will not cause any noise problems, the project team has chosen a design concept without balance shafts, which would only have meant unnecessary weight.

In the development process the reduction of frictional forces to a level never seen before in this class was given very high priority for reasons of fuel economy alone. With the crankshaft contributing significantly to frictional forces, the decision was taken to use relatively small bearing journals measuring just 45 mm or 1.77″ in diameter. To minimise oil consumption and, as a result, frictional losses, the bearing shells on all engines have been split up into five categories in order to limit bearing play in the main crankshaft bearing.

A further highlight of the engine's lightweight concept is the optimisation of crankshaft weight. As a result, crankshaft stiffness decreases from rear to front, which also offers benefits in terms of vibration management.

The forged crankshaft on the turbocharged engine comes additionally with four smaller balance weights over and above the four counterweights.

Weight-optimised trapezoidal connecting rods for even greater running smoothness. Seen from the side, the upper conrod opening in the trapezoidal connecting rods is trapezoidal in shape. The connecting rod opening is thus tapered at the top in the interest of lower weight at this decisive point. Given a mean operating speed of 18.5 m/sec, that is the speed at which the connecting rods move up and down, every gram of oscillating masses saved in this way serves to improve engine vibration.

The trapezoidal connecting rods are made in cracked technology, meaning that the lower connecting rod opening is broken at a predetermined point in the machining process.

The pistons on the turbocharged direct-injection power unit come with four valve pockets and the combustion chamber trough right in the middle in order to stratify the cylinder charge. And to reduce thermal loads, the pistons are cooled by splash oil. On the normal-aspiration power unit the pistons feature valve pockets without any further modifications or improvements.

On-demand oil supply without any loss of oil.

Equipped with a volume flow-controlled oil pump, the new power units rank unique in their class also in terms of their oil supply.

Operating as a function of oil pressure, the external gear pump driven by a chain delivers precisely the amount of oil required under all operating conditions. In other words, there is no need for a bypass feeding back excess oil or extra volume not needed. Benefitting from this optimised on-demand management without any unnecessary energy or forces, the volume flow-controlled oil pump consumes up to 160 W less drive energy than a conventional pump, reducing fuel consumption in the European driving cycle by approximately 1 per cent. And under normal driving conditions with the car in the hands of a customer, the reduction in fuel consumption is far greater, with a power saving of 1.25 kW or 1.7 bhp at 6,000 rpm.

Looking at the oil filter, the development engineers have opted in favour of a solution highly beneficial to the environment. As a result, the oil filter is not a metal cartridge difficult to recycle as special waste, but rather a paper filter insert easy to dispose of from its usual position in an easily accessible aluminium case with a plastic cover on top.

With turbocharged engines being subject to significant thermal loads and forces, an oil/water heat exchanger integrated in the oil filter housing keeps the engine oil temperature at a safe level even when running under full load. A further point is that the heat exchanger, by heating up the coolant more quickly, shortens the warming-up period and reduces both fuel consumption and exhaust emissions in the process.

The engines are filled initially with 4.2 litres of light running oil, with 3.7 litres being required when changing oil.

The cylinder head – the main sign of distinction.

The two engine variants differ primarily through the concept of the cylinder head and the fuel supply system. This explains why they share only a few common features in this area, to be specific the two camshafts, four valves per cylinder with a shaft diameter of 5 mm or 0.20″, one valve spring on each engine and the spark plug fitted vertically in position.

The large valve angle allows optimum design of the combustion chambers combined with low overall engine height. And converting all mechanical transmission elements to anti-friction rollers (roller-type drag arms), the engineers have significantly reduced friction forces.

Integration of numerous functions and components such as the oil dipstick, the vacuum pump, the high-pressure pump, thermostat housing and intake silencer serves additionally to meet the great demands made of the engine package.

Two engine variants cast in different processes.

Two different casting processes are used in production of the cylinder head: While the cylinder head on the direct-injection power unit is manufactured in a low-pressure die-casting process, the normal-aspiration engine is made in the innovative lost-foam casting process developed for the first time to production level in a six-cylinder power unit in the light-alloy foundry at BMW's Landshut Plant.

Since the cylinder heads are made by PSA Peugeot Citroen, the BMW Group has supported PSA Peugeot Citroen in introducing this process for large-volume production by providing appropriate know-how in production technology. Both processes are particularly well-suited for perfectly rendering the elaborate internal contours together with their hollow cavities for the air ducts as well as the oil and coolant circuits.

Contrary to conventional casting technologies, lost-foam casting is a positive process helping to further reduce the weight of the engine. In this case, an identical cylinder head model made of polystyrene is covered by a ceramic layer, shaken into a bed of sand and completely surrounded by casting sand with the exception of one duct cast into the cylinder head. The fluid aluminium then runs into the casting duct during the automated casting process, completely replacing the polystyrene model and taking on the shape of the cylinder head itself.

Given the very high precision of this casting process, even filigree features such as oil ducts, reflow pipes and blow-by channels can be properly integrated within the overall module. This, in turn, helps to avoid numerous production processes formerly required in the machining phase.

Ideal package dimensions thanks to single-belt drive.

For package reasons one of the objectives in the development process was to make the engine as short and compact as possible. Hence, both the alternator and the a/c compressor are driven by only one poly-V-belt tightened by means of a single-arm torsion-spring tensioner. With the coolant pump being driven via a friction gearing, there is no need for a second belt level, which makes the engine one of the shortest four-cylinders in its class.

Intelligent thermal management with an on-demand water pump.

On-demand management of the coolant volume delivered is one of the numerous measures taken to reduce fuel consumption. A friction gear mounted on a bearing arm is positioned between the water pump gear and the pulley on the crankshaft. An electrically operated eccentric gear serves to change the position of the gear wheel, and the water pump may be switched off when starting the engine cold in order to warm up the engine more quickly.

To save drive power and expedite the warming-up process, coolant is not circulated until the engine has reached its normal operating temperature. Then, when it has reached the appropriate temperature, the engine is held steady at that point by a thermostat masterminded by the engine's electronic “brain”, ensuring the most fuel-efficient coolant temperature at each respective operating point.

Service-friendly range of engines.

Ease of service and an appropriate maintenance concept were essential features in determining the engines' specifications. Depending on running conditions and the driver's style of motoring, oil service intervals will be approximately 30,000 km or 20,000 miles. The spark plugs and air filter, in turn, only have to be exchanged approximately every 60,000 km or 40,000 miles. The timing chain driving the camshafts is not only very precise and reliable, but also remains maintenance-free throughout the full running life of the engine. And automatic hydraulic valve play compensation serves last but not least to rule out any service or maintenance on the valve drive.


Naturally Aspirated Power Unit with Fully Variable Valve Drive: Best-in-Class in Every Respect.

With its compression ratio of 11:1, the naturally aspirated power unit develops maximum output of 85 kW/115 bhp at 5,700 rpm and revs up to a maximum speed of 6,500 rpm. Engine displacement of this four-cylinder is 1.6 litres, with torque reaching 140 Nm or 103 lb-ft at just 2,000 rpm and peaking at 160 Nm/118 lb-ft at 4,250 rpm. The wide useful engine speed range provided in this way offers an optimum combination of driving pleasure and fuel economy from this compact power unit.

Fully variable valve management as well as a wide range of features extending from the fully controlled oil and water pumps all the way to the optimisation of friction losses make this normal-aspiration power unit one of the most efficient engines throughout its entire segment, even including engines with direct gasoline injection.

Fully variable valve drive for enhanced fuel economy and even more dynamic performance.

Fully variable valve management applies the principle of throttle-free load control, masterminding engine power through the infinite adjustment of valve lift and the intake valve opening times. This technology based on the BMW Group's VALVETRONIC concept allows truly outstanding driving dynamics and performance on low fuel consumption.

In a conventional internal combustion engine output is controlled by means of the throttle butterfly. The engine is required to draw in fresh air particularly at part load against the resistance of the butterfly closed entirely or in part, which means a certain loss of power and efficiency as well as unnecessary fuel consumption.

The innovative valve management system used in this case controls both valve lift as well as the valve opening period and timing without requiring a throttle butterfly as a function of the gas pedal position. Almost free of losses, this control concept reduces fuel consumption, cuts back exhaust emissions, and ensures a far better engine response with greater refinement.

How this innovative valve management works.

This revolutionary engine technology is based on BMW's variable camshaft adjustment: Turning the two camshafts relative to one another, valve opening times can be infinitely adjusted for their beginning and end, but engine output can only be controlled within certain limits. Such individual, highly efficient control is now allowed by variable valve lift for infinite adjustment of both the opening cross-section and the intake valve opening periods.

In this case the camshaft no longer acts directly on the follower lever operating the valve, but rather on an intermediate lever placed in the middle of a roller forming the surface contour followed by the cam. The lower end of the lever rests on the roller running on the follower lever, while in the middle the lever rests on an eccentric shaft via a second roller.

When turning, the camshaft now moves the intermediate lever to and fro. Exactly when and where the lever exerts its effect is determined by the swivel point on the pivot lever itself. Driven by an electric motor, the eccentric shaft modifies this rotating point, thus varying valve lift infinitely from 0.2-9.5 millimetres (0.008-0.374″) as a function of the rise or “hump” on the intake cam.

The electric motor fitted directly on the cylinder head and adjusting the eccentric shaft by means of a worm gearing moves the lever in just 300 milliseconds from minimum to maximum lift. During the same period the intake camshaft is turned by up to 70, the outlet camshaft by up to 60. To achieve this enormous adjustment speed, valve management is controlled by an extremely fast, high-performance 32-bit engine management computer directly networked to the engine control unit.

Potential reduction of fuel consumption by up to 20 per cent. Depending on the route taken and traffic conditions, variable valve drive may reduce average fuel consumption by up to 20 per cent, with a saving in the EU test cycle of approximately 9 per cent. This innovative technology now making its debut in the small and compact car segment with this new naturally aspirated engine operates independently of fuel quality and the oil grade and does not require sulphur-free fuel, meaning that it is fully suited for all markets worldwide. Both the BMW Group and PSA Peugeot Citroen nevertheless advocate the ongoing improvement of fuel quality, in particular the de-sulphurisation of fuel.

Mechanical production technology of the highest standard.

This highly advanced valve management system demands the utmost in terms of production technology. The contours of the intermediate lever determining valve lift, for example, are ground down to an accuracy of 8/1,000ths of a millimetre. The camshafts on both engines are composite structures, meaning that cam rings made of high-strength stainless steel are shrunk on to a cast shaft and subsequently machined. In the final fine-polishing process the cams are then 1 machined to an accuracy of 1 micron (?1,000 mm). For reasons of weight the eccentric shaft is also made in this process for the first time, likewise with tolerance levels in the micron range.

Optimised combustion process for exemplary emission management.

An electric pump delivers fuel into the plastic injection rail housing the four injection valves. The optimum injection volume is calculated by the engine control unit taking numerous parameters into account, fuel being injected into the intake duct at a pressure of approximately 5 bar.

Individual coils on each spark plug provide exactly the right ignition voltage again controlled individually by the electronic management system. An anti-knocking sensor monitors the combustion process within the combustion chambers, retarding the ignition angle where necessary. Benefitting from this highly efficient knock control, the engine is able to run on fuel grades between 91 and 98 octane.

The emission management system incorporating a ceramic catalyst and two oxygen sensors is connected directly to the exhaust manifold.

Ancillaries: everything in place.

While the engine with fully variable valve drive still has a throttle butterfly, its only purpose is to provide a failsafe and diagnostic function. Under normal running conditions, therefore, the butterfly is always open. An additional vacuum pump at the rear end of the outlet camshaft generates the underpressure required for the brake servo.

For reasons of safety the ancillaries and peripheral components in all areas exposed to impact energy in a collision are designed to absorb and destroy energy in a well-defined process in the event of an impact, before penetrating the interior of the car under any such forces.

The High-Performance Power Unit: A Turbocharged Engine with Direct Fuel Injection.


The turbocharged fuel injection power unit combines the torque curve of a diesel with the benefits of a modern reciprocating-piston engine. Maximum torque of 240 Nm or 177 lb-ft comes at just 1,400 rpm, remaining virtually unchanged all the way to 4,000 rpm. This ensures significant thrust and muscle from low engine speeds, powerful acceleration, a perfect response, and maximum driving pleasure. Together with its maximum output of 105 kW/143 bhp at 5,500 rpm, this engine guarantees sporting performance wherever you go.

Cylinder head with conventional valve drive.

Contrary to the normal-aspiration engine, the cylinder head on the turbocharged four-cylinder with conventional valve drive features two overhead, composite camshafts, friction-optimised roller-type follower levers, and hydraulic lash adjusters. Valve drive has also been optimised for weight, reflecting the engine's fast-revving performance. Precisely this is why the valve shafts measure only 5 mm or 0.20″ in diameter, with the hollow shaft outlet valves being filled with sodium. The closing function is ensured by a valve spring building up the pressure required.

Fully variable adjustment of the intake camshaft guarantees maximum power and torque on very good fuel economy and emission management.

Direct gasoline injection for even more power.

Mounted at the rear end of the intake camshaft, the mechanically driven two-piston high-pressure pump delivers fuel to the injection valves via a stainless-steel distributor rail. These high-pressure valves inject fuel directly into the combustion chambers from the side at a pressure of up to 120 bar, in the process maintaining a homogeneous distribution of the fuel/air mixture in the combustion chambers.

At a compression ratio of 10.5:1, the turbocharged engine is compressed to a relatively high level for an internal combustion engine of this type. Precisely this is why the combustion process is monitored also in this case by anti-knock control correcting the ignition angles and charge pressure whenever required.

Elaborate twin-scroll turbocharger technology avoiding the usual turbo “lag”.

For the first time in this class, the direct injection engine in the new family comes with a twin-scroll turbocharger. Featuring this technology, the ducts of each two cylinders in the exhaust manifolds and turbochargers are different from one another in their design. Reducing exhaust gas counterpressure at low engine speeds, twin-scroll charger technology capitalises on the dynamic effect of the pulsing gas columns in the exhaust manifolds. The result is additional power and thrust on even less fuel, enabling the turbocharger to boost engine output from an earlier point. This effect is clearly noticeable, with the charger building up extra power from roughly 1,400 rpm, almost completely avoiding the “turbo lag” often criticised on turbocharged engines, and generating torque almost as fast as in a compressor engine.

The flow of exhaust gas accelerates the turbine wheel to a speed of up to 220,000 rpm. And at the same time the compressor running on the same shaft compresses the fresh air fed into the system. A wastegate complete with a check valve monitors the maximum turbocharger pressure of 0.8 bar. In addition, overpressure in the system is controlled by a dump valve activated when coasting with the intake manifold closed. To increase the charge level, the pre-compressed fresh air is cooled down in an intercooler before flowing into the combustion chamber. The intercooler itself is fitted in the car at a predetermined point meeting all the requirements of this particular configuration.

Maximum exhaust gas temperature is monitored by the electronic engine “brain” and is limited to 950 C (1,742 F). To prevent excessive build-up of heat in the oil- and water-cooled turbocharger after the engine has been stopped, an additional electrical water pump starts automatically as soon as the car comes to a standstill, dissipating any excess thermal energy from the system

You can download this press release as PDF (including power graphs and detailed engine specs) here.

Written By: Gabe

  • BrantV

    Gabe, It's not unheard of to have a few test mules with the purpose of finding where the limits are and where things break. i.e. what's the mean time between failures. Hard to test within the target specifications. Often you have to push much further just to be on the safe side. Wouldn't surprise me if they had a few tuned significantly over 200hp, hoping to simulate a few decades of engine wear and abuse in mere months.

    What excites me is seeing the torque curve of the 143 hp model surpass the JCW from 1400 to about 3500 very usable RPMs and then trying to imagine numbers for the equivalent MCS (assuming it's 170 hp), and then extrapolating further to the JCW. Just how much torque could it supply? but then I also noticed that the curve (or line) is very artificially flat from 1400 to 3600. Are they protecting something from breaking? Or de-tuning it to leave room for the MCS and JCW versions?

    Also, any ideas on how much weight savings might be in the cards here?

  • Barry / 10 Ball

    After reading the press release and all the comments, seems like there is a general consensus [me too] of disappointment with the lack of a higher output model. Power corrupts, indeed !! However, with the new motor still a couple years out, why would Mini want to take the spotlight totally off the current production by announcing a new motor that would make the old one seem like chopped liver? Those types of press releases cause autos to collect dust on the dealer lots. The new motor may indeed be more powerful. With luck, the new motor will have a few more ponies, the GVW will decrease by a few pounds [a hundred pounds, or more, would be nice], and the net result will be a better power to weight ratio with decreased fuel consumption. Reliability and longevity? Time will tell. I just hope the new Mini doesn't get too over-engineered — like in the case of BMW's Z4, that has the engine-bay to cabin interconnect tube [basically a flute] to 'leak' intake/engine sounds into the cabin. Warning: cynicism approaching — I guess you could take this a step further, to save weight/money, and just play .wav or MP3 files [over the sound system] of intake drone, valve clatter, and exhaust. Let's hope that doesn't happen… B^)

  • http://www.teammightyminiz.com iDiaz

    The MINI already has one of those interconnect tubes… look behind your intake box. A tube, conveniently placed to leak sound out of the cowl vent. ;)

  • derek

    Hmmm direct injection – did I miss something? The pic of the head doesn't show an additional “hole” for the fuel injector. Or does it share some kind of opening with the spark plug – like a pre-combustion chamber in other motors?

  • BrantV

    Yes :-)

    Direct injection appears to be only for the turbo.

    Page 18. … fuel being injected into the intake duct at a pressure of approximately 5 bar.

    Page 19 Direct gasoline injection for even more power.

  • Kevin

    oooh baby. Torque is 177@1400-4000….Lotza new advanced tech…. Dems good numbers dudes/dudettes.I cant wait for the next MCS.Christmas in July.Slurp(sorry, please excuse the drool on your monitor.)

  • Michael Legere


    Since there is no mention of a Inter Cooler on the Turbo engines, what do you think the upgrade path from JCW might look like?

  • steve Frost

    I like some very pointed features, i.e., roller cam, timing chain not belts. The downside is that turbo’s and/or superchargers are a “poor man 6 cylinder”. If you need the six then go for it and stop “turboing”. I had a Saab years ago and althought hte turbo was good and the waste gate opened at 4800 rpm it still had an oil leak in the turbo eventually. Also turbos just put more pressure on the cylinder heads.With new ceramic heads I hope the don’t blow gaskets. I also am not too keen on the french building unless BMW is in there “full bore”. I would take a wait and see attitude for the moment. For those Chrysler inthusiasts, they have had more than there share of engine problems over the years and for years. Last but not least remember, efficiency is another word for cost cutting.Remember the original idea of aluminum heads and blocks came from weight loss but if you overheat, you can’t cut aluminum heads over 10 thousandths but iron can go 50 plus. For the most part you have to toss the aluminum heads, that’s why the iron liners but these are just pathch jobs in the name of efficiency, keep it in mind.

  • Patrick R.


    there is a mention of an intercooler ” To increase the charge level, the pre-compressed fresh air is cooled down in an intercooler before flowing into the combustion chamber. The intercooler itself is fitted in the car at a predetermined point meeting all the requirements of this particular configuration.”

    modding potential will be much higher than that of a supercharged engine. esp. with direct injection…i cant wait to have a mini with a FMIC :)

  • jose cabalar
  • ChiliCooperS

    So what are they going to call it? The MINI Cooper T. Just like the rest of the manufacturers. I think the new motor will be nice but I think they need to look at heritage also. I thought the MINI was supposed to “break the cycle.” So much for that idea. :(

  • http://motoringfile.com Gabe

    The “S” in Cooper S doesn’t stand for supercharged.

  • Mike aka ChiliCooperS

    what does it stand for?? Yes even though you are correct, I still think it is wrong to change a thing that is very important to the heritage of the MINI. I’m just glad I got mine before BMW had a chance to screw it up.

  • Mike aka ChiliCooperS

    I don’t mean to be harsh I guess I will just miss the whine of the supercharger. I agree with most of you in saying I believe the new engine will substanualy improve the quality if the motoring experience, I just don’t see why they had to get rid of the supercharger. I am holding back all further judgement until I see the car myself.

    Have a great weekend.

  • Eric

    Has there been any new info. on how the model-to-engine drop will shake out?

    Will the S be getting the new 143 hp unit? Or is that for the Cooper? The 115 to the One or to the Cooper? Any word on this???

  • Alex

    I wonder if I can put one of those new engines on my 2002 mini cooper. It will be cool to have a turbo under there or even a super charger. Can it be done? Putting a cooper S motor on the cooper?

  • george

    What’s the world coming to a MINI with a French engine? That’s a slap in the face to everything that was once British. I am toughly disgusted with BMW for allowing even a concept of this car to be made. Turbo or not the idea of using a Citroen/Peugeot engine is yet another slap in the face to the car that was to be designed after classic mini. What’s next, French issue headlamps!!!! (Still upset about the Monte Carlo rally upset in 1966.) This is truly a sad day for mini owners.

  • http://motoringfile.com Gabe

    You should do a bit more research before posting such strong worded comments. BMW designed the engine in Germany and it will be built in England for the MINI. BMW is partnering with PSA mainly for help with logistics and for better economies of scale. This will be a complex and expensive engine, the more they make the less it will cost. This will be a German engineered engine built in the UK.

  • Steve

    Totally agree with you george. What is BMW playing at with such an icon as the Mini. If the contract with Chrysler runs out 2007 what’s wrong in BMW developing their own 1.6 4cyl engine + supercharger. They have done it for the 1 series 1.6 + Turbo and keep the main component of a mini,the ENGINE BMW. Disgusted that the PSA engine will also be mass produced and put into small / medium sized Citroens and Peugeots. I would pay more if the engine was only for the Mini afterall nobody wants to pay £18000 for a Mini and somebody else having the same engine in a Citroen / Peugeot for a mere £8000.

  • http://motoringfile.com Gabe

    Disgusted that the PSA engine will also be mass produced and put into small / medium sized Citroens and Peugeots.

    BWW doesn’t have the capital to spend on developing such a high-tech engine for a car whose annual production is so low. They need economies of scale for such development to be viable. Therefore they had to design and develop an engine and then find a partner to help with production logistics.

    To me the argument against is simply ridiculous and in no way logical. You would take less refinement, performance, and technology if the engine was more exclusive. As an automotive enthusiast I find that trade-off to be unfathomable.

  • Steve

    Fair point Gabe: But do BMW engines feature in other manufactured cars. Certainly NOT. So I’m still disgusted that BMW will ruin the mini forever, combining development with the likes of the french who lets say aren’t recogised in producing refined engines. What was wrong in partnering another german company. Being a car enthusiast whats wrong in modifying BMW’s 1.6 fleet and dropping it in the mini, to me that makes damm good sense for many aspects: COST,REFINEMENT,RELIABILITY,PRESTIGE.

  • http://motoringfile.com Gabe

    Why is a German company preferred over a French company? Did I miss something here? Surely everyone understands that we are in a global ecomony and dozens of key components on the current MINI come from France.

    Also it may be of note that BMW is currently rumored to be in talks with GM about supplying some of its award winning diesel engines. It’s all ecomonies of scale. If you want a company to stay independant and true to their mission in this day in age, compromises must be made in some way. Just be glad the compromises aren’t mechanical or technological.

  • Lucas

    I agree with Gabe on this one. I think people keep forgetting, despite MINI’s U.S. market position as “premium subcompact”, it’s still the cheapest car on BMW’s model line. For a high-tech, high performance engine such as this one, the development cost may sky-rocket to the point that they’d need to sell MINIs at $30k or more, then you’d have to ask yourself, whether the car’s pricing is reasonable for the market?

    While BMW may modify BMW’s own 1.6 liter engine, I think MINI has much tougher constraints in size and weight than any of its BMW cousins to allow the modification to be practical. Take a look at a 1-series bonnet and you’ll notice the engine compartment is HUGE compared to the MINI.

    One may argue that BMW can use it on its own low-end cars (such as the 1 series) to tip the economy of scale. However, because this is a relatively small engine with high performance, is it really practical to put to use in larger cars such as the 3-series and 5-series? Why would you use such a high-tech, compact engine, when a lower-tech, slightly larger engine could produce the same (or better) performance with about the same fuel economy? It’s like one could design a ultra-high-tech 2-cylinder engine that can produce 200hp, so it’s ultra small. Despite of that, would you prefer this 2-cylinder engine to a 4-cylinder producing the same power with lower tech?

    In any case, partnering with other automakers to design an engine makes no less sense in cost, refinement, reliability and prestige than if BMW had designed the engine completely on their own. Given that BMW is the obvious expert in this field, and from the features and spec, they are the major contributors to the design, it is cost effective, would have the same (or similar) refinement and reliability as other BMW power plants, without any loss in prestige.

  • Greg
    1. Reliability with such profound engineering;
    2. Price for the cooper S;
    3. External aesthetics (which looks like they are getting cheap with)…

    in that order.

  • Vinnie

    Will the MCS change from the supercharger to a turbo?

    That is bad news for an automatic transmission lover.

  • rex james

    Just a small thought from an Australian mini cooper s driver – is there at all any possiblity that mini’s in the future would have a 2.0 Litre supercharged motor…..
    could some one advise me of this situation at all

    Thank You

    Rex James

  • Pingback: MotoringFile » Blog Archive » The Next MINI Caught Cold Weather Testing()

  • WoW

    As an Australian driver of a mighty Peugeot 206GTi for the past five years (and almost 100,000 miles) now, I’m driving a French car built in England and LOVING it. I assume from the references to Chrysler that this is an American site, which perhaps explains the apparent ignorance of how the French — and Peugeot in particular — have been building cars that have dominated the World Rally Championship for the past five years (where I don’t seem to recall anything American, or German, come to think of it, even creating a ripple). Count yourselves lucky …

  • http://www.motoringfile.com/ Gabe

    Just keep in mind that there are plenty of Americans (the people who run the site for instance) who are not ignorant about all of this. In fact there are many of us who can’t wait for the change.

  • peter

    So, did I miss it, or what, but any idea who will be the manufacturer of the turbo unit?

  • http://www.iamrascal.com Chris

    I think the new engine will be a great step. Turbo’s are much more efficient than superchargers. I will miss the whine of the supercharger, but the tunability of the new turbo unit will be great.

  • Pingback: MotoringFile » 2006 » February » 28()

  • Pingback: MotoringFile » Archive » Next Generation MINI Revealed (Updated)()

  • Tom

    Thanks to all my gearhead brethren for all this talk on the new Mini engine. Now I’m really confused, but leaning toward just ordering the new car (if they’re even taking orders yet) and waiting. I was told by a dealer rep that the wait on a new order Mini is still 4-5 months. This is a CA dealer that sells MSRP. And they said they will not have the new model 07’s until January 07. This wait vs wait (which wait will it be?) makes me wonder if they’re just saying these things regarding 06 and 06 Minis to move the stock they have on hand. This dealer has a bunch of Minis, virtually all sunroofs and converts, and all I want is a plain white Mini S with a solid top with the Cooper Works package and the upgrade sound system. Hell, I’d take it with rollup windows if you could downgrade to that. :-) Tom

  • Pingback: tintedpane.com » Blog Archive » Mini2 Engines (R56) and BMW R6D()

  • jonathan pledger

    Hi, wow it does all look exciting…

    I however am a little less than impressed by “bmw” engines.

    We have a new bmw 318i and in the 3 months we have owned it it has been back to the garage 5 times with the same engine fault.

    The engine loses power, stalls, fuel consumption goes down, power is lost, and it “misfires”.

    they have diagnosed it as an engine management glitch, but cannot solve it. they have done various software fixes, swapped the valvetronic motor, and spent weeks on it without getting an answer. it is about to go back to them again…

    these days they have to try and fix engines with laptops!

    I just hope the mini engine is more reliable than it’s big brother’s.

  • ed

    I have a 2007 MCS and the engine is just outstanding. The low end torque is there as promised and the fuel economy is just unbelieveable. I get 37 mpg after a spirited mountain road driving. I would recommend a MINI Cooper S to anyone. The best engine I have had in any car.

  • aminkadra

    sir! the is so cool! i hope i get that one mini engine

  • Pingback: ASAP--low oil, car stalled , car not start, july 07 model - MINI2 - MINI Forum()

  • Pingback: Need a New Car? Nope, Just a New Engine! : Gas 2.0()

  • Beo

    Funny how the entire text not only once has the keyword “reliability”. They mention noise, emission and fuel usage reduction quite often, but where are the notes about reliability?

    No wonder Toyota rules…

  • http://www.ittflowcontrol.com/midland-acs Hydraulic Valves UK

    Hi, 30 000km (20 000 for diesel) has long been the service interval for the current engines here in Europe. And a lot of people don’t change oil more frequently, without any adverse effect.So who would let their engine go without an oil change for 30,000km?

  • Kelly

    Nice post!! Great to read about the details here. Thanks for sharing. http://www.bdeltd.co.uk/

Sort by MINI model

MotoringFile on Instagram

MINI Model Cheat Sheet

1st Gen MINI
R50: One & MC Hatch
R52: All 1st Gen MINI Convt.
R53: MCS Hatch
2nd Gen MINI
R55: Clubman
R56: Hatch
R57: Convertible
R58: Coupe
R59: Roadster
R60: MINI Crossover
R61: MINI Crossover Coupe
3rd Gen MINI
F54: Clubman
F55: Five Door Hatch
F56: Hatch
F57: Convertible
F60: MINI Crossover
F58: Traveller

Advertise with MotoringFile

If you or your company are interested in advertising on the most influential MINI website in the world, please visit our Advertising section. If you have further questions about becoming a sponsor or would like to see our rate sheet please feel free to contact us directly.
mini mini
Translate MotoringFile with Google: 
2015 F56 JCW

MotoringFile Buyers Guides

R50 ('02-'06 MC) Buyers Guide
R53 ('02-'06 MCS) Buyers Guide



MotoringFile Reviews

'12 JCW Coupe
'11 Fiat 500 Sport
'11 Tesla Roaster 2.5 '11 Countryman Comparo
'11 Cooper S Hatch
'11 Countryman MCS (FWD)
'11 Countryman MC (auto)
'10 Mayfair MCS (auto)
'11 Countryman MCS (ALL4)
'10 MINI E
'10 Tesla Roadster Sport
'09 Cooper S Convertible
'09 JCW Hatch
'09 JCW Clubman
JCW Stage I vs JCW Stage II
'08 Clubman S (Auto)
1st Drive: '08 MINI Clubman
'08 Smart Fourtwo
Comparison: '08 BMW 135i
'06 R53 MCS vs '07 R56 MCS
'07 R56 JCW (Stage 1)
'07 MINI Cooper S Long Term
'07 BMW Z4 M Coupe
'07 MINI Cooper & Cooper S
Audio: '07 MC/MCS at the Track
'06 JCW GP Long term
Reader Review: JCW GP
'06 JCW Cooper S Long Term
Comparison: '06 Lotus Elise
Comparison: '06 Mazda MX5
Comparison: '06 UK Focus ST
Comparison: '06 Civic Si
Comparison: '04 TVR T350
Comparison: '06 Nissan 350z
Comparison: '06 VW GTI w/DSG
Podcast: Cooper S Auto
Podcast: BMW 325i
Podcast: JCW MC Soundkit
'04 JCW MINI Cooper Tuning Kit
'05 MCS: One Month Review
'05 MCS Auto
'05 JCW S 1st Drive
'05 MINI Cooper
'05 MCS Conv. Long Term
'05 MINI Cooper S
'05 MCS Cabrio 1st Drive
'04 JCW MCS First Drive
'04 MC w/JCW Tuning Kit
'04 MINI Cooper CVT
'02 MCS 3 year Review
Autocrossing the MINI Range